
Chapter 5

[123]

The View
Let us now look at the View. How does the framework know which View or aspx
page to call? Remember that we passed the value "Index" in the action parameter
(in the default route in the global.asax.cs file), so the Index.aspx will get called.
Here is the code-behind of Index.apsx:

public partial class Index : ViewPage
 {
 }

There is absolutely no code here, which is a very important characteristic of the
MVC design. The GUI should have no logical or data fetching code. Note that the
Index class is derived from the ViewPage class. Using this ViewPage class, we can
access all of the items in the ViewData dictionary that were set in the controller's
Index() method and passed on to the View. Here is how we are accessing the
ViewData in HTML:

<asp:Content ID="indexContent" ContentPlaceHolderID="MainContent"
 runat="server">
 <h2><%= Html.Encode(ViewData["Message"]) %></h2>
 <p>
 To learn more about ASP.NET MVC visit <a href="http://asp.net/
mvc" title="ASP.NET MVC Website">http://asp.net/mvc.
 </p>
</asp:Content>

We can directly access the ViewData dictionary in HTML. Now that we have seen
how MVC works, we will create a new page to learn how to show data using a
custom DAL and strongly typed objects, instead of the ViewData dictionary. Our
example page will show a list of all the customers.

The Model
We will use the 5-Tier solution we created in the previous chapter and change the
GUI layer to make it follow the MVC design using the ASP.NET MVC framework.
Open the solution we created in the previous chapter and delete the ASP.NET web
project from it. The solution will then only contain 5Tier.BL,
5Tier.DAL and 5Tier.Common projects.

Right click the solution in VS, and select Add New Project, and then select
ASP.NET MVC Web Application from the dialog box. Name this new web project
as Chapter05.MVC. This web project will be the new MVC based UI tier of our OMS
application in this chapter.

Model View Controller

[124]

The Customer.cs and CustomerCollection.cs class files in the business tier (5Tier.
Business class library) will be the Model in our MVC application. To show a list of
customers, the CustomerCollection class simply calls the FindCustomer() method
in CustomerDAL.cs. We have already seen these classes in action in the previous
chapter. So we can use an n-tier architecture in an MVC application, hence this
shows that MVC and n-tier are not mutually exclusive options while considering
the application architecture of your web application. Both actually compliment
each other.

We can also create a utility class named CustomerViewData to transfer the Model
objects to the View. There are multiple ways to pass- in the Model to the View
through the Controller, and creating ViewData classes is one of them. Here is the
CustomerViewData class created in the CustomerComtroller.cs file in the
Chapter05.MVC web project:

#region ViewData
 /// <summary>
 /// Class used for transferring data to the View
 /// </summary>
 public class CustomerViewData
 {

 public CustomerViewData() { }

 public CustomerViewData(Collection<Customer> customers)
 {
 this.customers = customers;
 }

 public Collection<Customer> customers;

 public Customer customer;

 }
 #endregion

Notice that this ViewData class is simply wrapping the business object inside it so
that we can use this class in the UI layer instead of directly passing and manipulating
domain objects.

Wiring Controller, Model, and View
We will now create routes in the global.asax file under the existing home page
route as follows:

routes.MapRoute(
"Customer", "Customer/{action}/{id}", new {
 controller = "Customer", action = "Show", id="" });

